
english
english

Quantum Flag Manifolds Seminar: MÚ MFF UK Praha 2013

9 Quantum Equivariant Vector Bundles

Recall that classically, for M = G/H a homogeneous space, we have a correspon-

dence between the category of equivariant finite dimensional vector bundles over

M , and the category of finite dimensional representations of H . In this lecture we

will show how one can extend this correspondence to the noncommutative setting.

9.1 Quantum Homogeneous Spaces

From here on, G, and H will always be Hopf algebras over the complex numbers.

We denote the comultiplication, counit, and antipode of each by ∆, ε, and S

respectively. Throughout, we use Sweedler notation, as well as denoting g+ :=

g − ε(g)1, for g ∈ G, and V + = V ∩ ker(ε), for V a subspace of G

We will recall that a (right) comodule for H is a is a pair (V,∆R), where V is a

vector space, and

∆R : V → V ⊗H,

is a linear map , called the coaction, for which it holds that

(id⊗∆) ◦∆R = (∆R ⊗ id) ◦∆R, (id⊗ ε) ◦∆R = id.

In an extension of Sweedler notation, we will usually denote

∆R(v) =
∑

i

vi ⊗ hi =: v(0) ⊗ v(1).

We say that an element v ∈ V is coinvariant if ∆R(v) = v ⊗ 1. We denote the

subspace of all coinvariant elements by V G, and call it the coinvariant subspace of

the coaction.

For H also a Hopf algebra, a homogeneous right H-coaction on G is a coaction

of the form (id ⊗ π) ◦ ∆, where π : G → H is a Hopf algebra map. We call the

coinvariant subspace M := GH of such a coaction a quantum homogeneous space.

As is easy to see, M will always be a subalgebra of G. Moreover, it can be shown

without difficulty that the coaction of G restricts to a right G-coaction on M , and

that

π(m) = ε(m)1H , (for all m ∈ M). (1)

Note that G is itself a trivial example of a quantum homogeneous space, for the

choice π = ε.

9.2 Takeuchi’s Categorical Equivalence

Let us now introduce a noncommutative generalisation of the category of finite
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and whose morphisms are both left M-module and right H-comodule maps. In

what follows, for sake of clarity, we will denote the right M-action on an object in
G
MMM by juxtaposition, while we will denote the right M-action on an object in

MH
M by ⊳.

Let us now move on to constructing an equivalence between these categories: For

any object V in MH
M , we can associate to it a corresponding object in G

MMM as

follows: Consider the coinvariant subspace (G ⊗ V )H , where G ⊗ V is endowed

with the usual tensor product coaction. We can give (G⊗V )H the structure of an

object in G
MMM by defining right and left M-actions according to

m(
∑

i

gi ⊗ vi) =
∑

i

mgi ⊗ vi, (
∑

i

gi ⊗ vi)m =
∑

i

gim(1) ⊗ (vi ⊳ m(2)),

and defining a left G-coaction according to

∆L(
∑

i

gi ⊗ vi) =
∑

i

gi(1) ⊗ gi(2) ⊗ vi.

The right M-module structure of E clearly restricts to a right M-module structure

on E/(M+E). Moreover, it can be shown using (1) that the left G-module structure

of E induces a right H-comodule structure on E/(M+E) defined by

∆R(e) = e(0) ⊗ S(π(e(−1))), (e ∈ E), (3)

where e denotes the coset of e in E/(M+E). To show that these two structures

are compatible in the sense of (2) is routine. Thus, we have given E/(M+E) the

structure of an object in MH
M . Consider now the functors

ΦM :GMMM → MH
M , ΦM(E) = E/(M+E),

ΨM :MH
M → G

MMM , ΨM(V ) = (G⊗ V )H .

Where for f : E → F a morphism in G
MMM , the morphism ΦM(f) : ΦM(E) →

ΦM (F) is the function to which f descends on ΦM (E). While for ϕ : V → W a

morphism in MH
M , we define ΨM(ϕ) := 1 ⊗ ϕ. To show that both morphisms are

well-defined is routine. Moreover, using some basic linear algebra arguments, it

can also be shown that, for E ,F two objects in G
MMM , and V,W two objects in

MH
M , we have

Φ(E ⊕ F) = Φ(E)⊕ Φ(F), Ψ(V ⊕W ) = Ψ(V )⊕Ψ(W ), (4)
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and if we further assume that E ⊆ F , and V ⊆ W , then

Φ(E/F) = Φ(E)/Φ(F), Ψ(V/W ) = Ψ(V )/Φ(W ). (5)

What we should now ask is when this induces an equivalence of categories. This

leads us to the notion of faithful flatness: We say that G is a faithfully flat module

over M if the tensor product functor G ⊗M − : MM → CM, from the category

of left M-modules to the category of complex vector spaces, preserves and reflects

exact sequences.

Theorem 9.1 (Takeuchi [2]) Let π : G → H be a quantum homogeneous space

for which G is a faithfully flat right module over M = GH . A natural isomorphism

between ΨM ◦ ΦM and the identity is determined by

frameM : E → ΨM ◦ ΦM(E), e 7→ e(0) ⊗ e(1), (6)

frame⊥M : ΦM ◦ΨM(V ) → V,
∑

i

gi ⊗ vi 7→
∑

i

ε(gi)vi, (7)

giving an equivalence of categories between G
MMM and MH

M .

9.3 The Quantum Projective Spaces

As an example of a quantum homogeneous space, we will take the quantum pro-

jective spaces. These are special cases of the quantum flag manifolds introduced in

previous lectures. We will give an alternative presentation of these algebras. Our

motivation here is two-fold: first we wish to provide a more concrete construction,

and second we wish to give a first glimpse of the general Yang–Baxter construction

of Hopf algebras.

9.3.1 The Quantum Special Unitary Group

For q ∈ (0, 1] and ν := q− q−1, let Cq[MN ] be the quotient of the free noncommu-

tative algebra C
〈

ui
j, | i, j = 1, . . . , N

〉

by the ideal generated by the elements

ui
ku

j
k − quj

ku
i
k, uk

i u
k
j − quk

ju
k
i , (1 ≤ i < j ≤ N, 1 ≤ k ≤ N);

ui
lu

j
k − uj

ku
i
l, ui

ku
j
l − uj

lu
i
k − νui

lu
j
k, (1 ≤ i < j ≤ N, 1 ≤ k < l ≤ N).
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These generators can be more compactly presented as

N
∑

w,x=1

Rac
wxu

w
b u

x
d −

N
∑

y,z=1

Ryz
bdu

a
yu

c
z, (1 ≤ a, b, c, d ≤ N), (8)

where, for H the Heaviside step function with H(0) = 0, we have denoted

Rik
jl = qδikδilδkj + νH(k − i)δijδkl. (9)

We can put a bialgebra structure on Cq[MN ] by introducing a coproduct ∆, and

counit ε, uniquely defined by ∆(ui
j) :=

∑N

k=1 u
i
k ⊗ uk

j , and ε(ui
j) := δij. The

quantum determinant of Cq[MN ] is the element

detN :=
∑

π∈SN

(−q)ℓ(π)u1
π(1)u

2
π(2) · · ·u

N
π(N),

where summation is taken over all permutations π of the set of N elements, and

ℓ(π) is the length of π. As is well-known, detN is a central and grouplike element of

the bialgebra. The centrality of detN makes it easy to adjoin an inverse det−1
N . Both

∆ and ε have extensions to this larger algebra, which are uniquely determined by

∆(det−1
N ) = det−1

N ⊗ det−1
N , and ε(det−1

N ) = 1. The result is a new bialgebra which

we denote by Cq[GLN ]. We can endow Cq[GLN ] with a Hopf algebra structure by

defining

S(det−1
N ) = detN , S(ui

j) = (−q)i−j
∑

π∈SN−1

(−q)ℓ(π)uk1
π(l1)

uk2
π(l2)

· · ·u
kN−1

π(lN−1)
det−1

N ,

where {k1, . . . , kN−1} = {1, . . . , N}\{j}, and {l1, . . . , lN−1} = {1, . . . , N}\{i} as

ordered sets. Moreover, we can give Cq[GLN ] a Hopf ∗-algebra structure by setting

(det−1
N )∗ = detN , and (ui

j)
∗ = S(uj

i ). We denote this Hopf ∗-algebra by Cq[UN ],

and call it the quantum unitary group of order N . If we quotient Cq[UN ] by the

ideal 〈detN −1〉, then the resulting algebra is again a Hopf ∗-algebra. We denote

it by Cq[SUN ], and call it the quantum special unitary group of order N .

The algebra we have presented here the same as the one presented in previous

lectures, however here we have constructed it from a so-called R-matrix. This

construction holds true for any R1⊗R2 ∈ MN (C)⊗MN (C) satisfying the quantum

Yang–Baxter equation

(R1 ⊗ R2 ⊗ 1)(R1 ⊗ 1⊗ R2)(1⊗ R1 ⊗R2)

= (1⊗ R1 ⊗ R2)(R1 ⊗ 1⊗ R2)(R1 ⊗ R2 ⊗ 1).
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This is a much more general construction than the Drinfeld–Jimbo quantised co-

ordinate algebra approach.

9.3.2 The Quantum Projective Spaces Cq[CPN−1]

We are now ready to reconstruct the quantum projective spaces as a quantum

homogeneous space of Cq[SUN ]:

Definition 9.2. Let αN : Cq[SUN ] → Cq[UN−1] be the surjective Hopf alge-

bra map defined by setting αN(u
1
1) = det−1

N−1; αN(u
1
i ) = αN(u

i
1) = 0, for

i = 2, · · · , N ; and αN(u
i
j) = ui−1

j−1, for i, j = 2, . . . , N . Quantum projective (N−1)-

space Cq[CPN−1] is defined to be the coinvariant subspace of the corresponding

homogeneous coaction ∆SUN ,αN
= (id⊗ αN) ◦∆, that is,

Cq[CPN−1] := {f ∈ Cq[SUN ] |∆SUN ,αN
(f) = f ⊗ 1}.

Now let us consider the element zij := ui
1S(u

1
j). From the following calculation,

we can see that zij is contained in Cq[CPN−1], for all i, j = 1, . . . , N :

∆SUN
(zij) = ∆SUN

(ui
1S(u

1
j)) = (id⊗ αN )(

N
∑

a,b=1

ui
aS(u

b
j)⊗ ua

1S(u
1
b))

=
N
∑

a,b=1

ui
aS(u

b
j)⊗ αN(u

a
1S(u

1
b)) = ui

1S(u
1
j)⊗ αN (u

1
1S(u

1
1))

= ui
1S(u

1
j)⊗ det−1

N detN = zij ⊗ 1.

Moreover, using representation theoretic methods, it can be shown thatCq[CPN−1]

is generated as a C-algebra by the set {zij | i, j = 1, . . . , N}. (See [1] for more

details.)

As one would hope, Cq[SUN ] is a faithfully flat module over Cq[CPN−1]. An im-

portant family of examples of objects in SUN

CP
N−1MCP

N−1 is the quantum line bundles

Ep, for p ∈ Z: The module Ep is defined to be ΨCPN−1(C), where C consid-

ered as an object in M
UN−1

CPN−1 according to the unique C[U1]-coaction for which

λ 7→ λ ⊗ det−p
N−1, for λ ∈ C. Clearly, we have that E0 = Cq[CPN−1]. This

generalises the classical construction of the line bundles over CPN−1.
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