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9 Quantum Equivariant Vector Bundles

Recall that classically, for M = G/H a homogeneous space, we have a correspon-
dence between the category of equivariant finite dimensional vector bundles over
M, and the category of finite dimensional representations of H. In this lecture we

will show how one can extend this correspondence to the noncommutative setting.

9.1 Quantum Homogeneous Spaces

From here on, GG, and H will always be Hopf algebras over the complex numbers.
We denote the comultiplication, counit, and antipode of each by A, ¢, and S

respectively. Throughout, we use Sweedler notation, as well as denoting ¢* :=
g—¢(g)1, for g € G, and Vt =V Nker(e), for V a subspace of G

We will recall that a (right) comodule for H is a is a pair (V,Ag), where V is a
vector space, and
Ar:V >V ®H,
is a linear map , called the coaction, for which it holds that
(id® A)oAgp = (Ar®id) o Ag, (id®e) o Ag =id.
In an extension of Sweedler notation, we will usually denote

AR(’U) = Zvi ®Q h; =: V(o) @ v(1)-

We say that an element v € V' is coinvariant if Ag(v) = v ® 1. We denote the
subspace of all coinvariant elements by V¢, and call it the coinvariant subspace of

the coaction.

For H also a Hopf algebra, a homogeneous right H-coaction on G is a coaction
of the form (id ® ) o A, where 7 : G — H is a Hopf algebra map. We call the
coinvariant subspace M := G of such a coaction a quantum homogeneous space.
As is easy to see, M will always be a subalgebra of G. Moreover, it can be shown
without difficulty that the coaction of G restricts to a right G-coaction on M, and
that 1

w(m) =e(m)ly, (for all m € M). (1)

Note that G is itself a trivial example of a quantum homogeneous space, for the

choice m = €.

9.2 Takeuchi’s Categorical Equivalence



and whose morphisms are both left M-module and right H-comodule maps. In
what follows, for sake of clarity, we will denote the right M-action on an object in
¢ M by juxtaposition, while we will denote the right M-action on an object in
ME by <.

Let us now move on to constructing an equivalence between these categories: For
any object V in M, we can associate to it a corresponding object in § M, as
follows: Consider the coinvariant subspace (G ® V), where G @ V is endowed
with the usual tensor product coaction. We can give (G ® V) the structure of an

object in §,M s by defining right and left M-actions according to
m(z g @) = Z mg' ® v’ (Z g @v)m = Z g'may ® (V' am)),
and defining a left G-coaction according to

A9 ®v) =D gy @ gixy © "

The right M-module structure of £ clearly restricts to a right M-module structure
on £/(M*E). Moreover, it can be shown using (1) that the left G-module structure
of £ induces a right H-comodule structure on £/(M*E) defined by

Ar(e) = 2@ ® S(r(e-)), (e € ), (3)

where € denotes the coset of e in £/(MTE). To show that these two structures
are compatible in the sense of (2) is routine. Thus, we have given £/(MTE) the

structure of an object in M. Consider now the functors

(I)M3%;4MM—>M1?@ O (E) = E/(MTE),

Where for f : & — F a morphism in {zM;, the morphism ®(f) : ®p(E) —
)/ (F) is the function to which f descends on ®/(E). While for ¢ : V- — W a
morphism in M we define ¥y;(p) := 1 ® ¢. To show that both morphisms are
well-defined is routine. Moreover, using some basic linear algebra arguments, it

can also be shown that, for £, F two objects in §,My;, and V, W two objects in

M we have

OEDF)=D(E) @ D(F), VVeW)=vV)svW), (4)



and if we further assume that £ C F, and V C W, then
O(E/F) = D(E)/D(F), (VW) =0(V)/D(W). (5)

What we should now ask is when this induces an equivalence of categories. This
leads us to the notion of faithful flatness: We say that G is a faithfully flat module
over M if the tensor product functor G @y — @ yM — M, from the category
of left M-modules to the category of complex vector spaces, preserves and reflects

exact sequences.

Theorem 9.1 (Takeuchi [2]) Let 7 : G — H be a quantum homogeneous space
for which G is a faithfully flat right module over M = GH . A natural isomorphism

between Wy o ®y; and the identity s determined by

framey : € = Wy 0 Dy (E), e — ey @ e, (6)
framey, : @ 0 Uy (V) =V, Zg ®UZ»—>Z€( v (7)

giving an equivalence of categories between § My and MAL.

9.3 The Quantum Projective Spaces

As an example of a quantum homogeneous space, we will take the quantum pro-
jective spaces. These are special cases of the quantum flag manifolds introduced in
previous lectures. We will give an alternative presentation of these algebras. Our
motivation here is two-fold: first we wish to provide a more concrete construction,
and second we wish to give a first glimpse of the general Yang-Baxter construction

of Hopf algebras.

9.3.1 The Quantum Special Unitary Group

For ¢ € (0,1] and v := ¢ — ¢!, let C,[My] be the quotient of the free noncommu-
tative algebra C <u§, li,j=1,..., N> by the ideal generated by the elements

uf — quliuf (1<i<j<N,1<Ek<N)
ui—uufui, (1<i<j<N, 1<k<I<N).

i, J, i
UpUy, — qUL U, u

i,,J J, e i,
UpUy, — Uy, Uy —



These generators can be more compactly presented as

N N
> R upuh — Y Rygutul, (1<a,b,c,d<N), (8)

w,x=1 y,z2=1

where, for H the Heaviside step function with H(0) = 0, we have denoted
R;]; = qéik@l(skj + I/H(k’ — Z)(SZ](SM (9)

We can put a bialgebra structure on C,[My] by introducing a coproduct A, and
counit &, uniquely defined by A(u}) := SV Uk ® ub, and e(u}) := 0;. The
quantum determinant of C,[My] is the element

dety := ZﬂESN (—Q)E(”)U}r(l)ui(z) e UfrV(Ny

where summation is taken over all permutations m of the set of N elements, and
¢(m) is the length of 7. As is well-known, det is a central and grouplike element of
the bialgebra. The centrality of det y makes it easy to adjoin an inverse dety'. Both
A and ¢ have extensions to this larger algebra, which are uniquely determined by
A(dety') = dety' ®dety', and e(dety') = 1. The result is a new bialgebra which
we denote by C,[GLy]. We can endow C,[GLy| with a Hopf algebra structure by
defining

- 7 i—7 T kn— —
Sdoty') = detw,  S0up) = (=0 o (0 ity iy il ety

where {k1,...,kn_1} = {1,...,N}\{j}, and {l1,...,In-1} = {1,..., N}\{i} as
ordered sets. Moreover, we can give C,[GLy| a Hopf *-algebra structure by setting
(dety')* = dety, and (u})* = S(ul). We denote this Hopf *-algebra by C,[Ux],
and call it the quantum unitary group of order N. If we quotient C,[Uy] by the
ideal (dety —1), then the resulting algebra is again a Hopf x-algebra. We denote
it by C,[SUy], and call it the quantum special unitary group of order N.

The algebra we have presented here the same as the one presented in previous
lectures, however here we have constructed it from a so-called R-matriz. This
construction holds true for any Ry ® Ry € My (C)® My (C) satisfying the quantum

Yang-Baxter equation

(RI®OR,®1)(R1®1® Ry)(1® R, ® Ry)
= (1R Q@R)(R ®1® Ry)(R; ® Ry ®1).



This is a much more general construction than the Drinfeld—Jimbo quantised co-

ordinate algebra approach.

9.3.2 The Quantum Projective Spaces C,[CPV!]

We are now ready to reconstruct the quantum projective spaces as a quantum

homogeneous space of C,[SUn|:

Definition 9.2. Let ay : C,[SUy] — C,4[Un—_1] be the surjective Hopf alge-
bra map defined by setting ay(ul) = dety';; an(ul) = an(u}) = 0, for

i=2,--,N;and ay(u}) = u’}

iy, ford,j=2,...,N. Quantum projective (N —1)-

space C,[CPN~1 is defined to be the coinvariant subspace of the corresponding

homogeneous coaction Agpy oy = (Id ® ay) o A, that is,

Cq[CPN_l] ={f¢€ Cq[SUN] | Asvy,an(f) = f® 1}

Now let us consider the element z;; := u}S (u]l) From the following calculation,

we can see that z;; is contained in C,[CPY™1], for all i,j =1,..., N:

At (2i5) = Dsvy (1S (1)) = (id @ an) (Y upS(u}) @ ugS(w))

a,b=1

= > uS(u) ® an(uiS(u)) = uiS(u) ® an(uiS(ur))

a,b=1

= uiS(u}) @ dety' dety = 2 @ 1.

Moreover, using representation theoretic methods, it can be shown that C,[CPN 1]
is generated as a C-algebra by the set {z;|i,7 = 1,...,N}. (See [1] for more
details.)

As one would hope, C,[SUy] is a faithfully flat module over C,[CPY~1]. An im-
portant family of examples of objects in 81 Mgpry-1 is the quantum line bundles
&y, for p € Z: The module &, is defined to be Ugpn-1(C), where C consid-
ered as an object in nglvgvl,l according to the unique C[U;]-coaction for which
A = A®dety’,, for A € C. Clearly, we have that & = C,JCPY~'. This

generalises the classical construction of the line bundles over CPV 1,
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